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Abstract. The solution of a particular nonconvex program is usually very dependent on the 
structure of the problem. In this paper we identify classes of nonconvex problems involving 
either sums or products of ratios of linear terms which may be treated by analysis in a trans- 
formed space. In each class, the image space is defined by a mapping which associates a 
new variable with each original ratio of linear terms. In the image space, optimization is easy in 
certain directions, and the overall solution may be realized by sequentially optimizing in these 
directions. 

In addition to these ratio problems, we also show how to use image space analysis to treat the 
subclass of problems whose objective is to optimize a product of linear terms. For each class of 
nonconvex problems, we present an algorithm that locates global solutions by computing both 
upper and lower bounds on the solution and then solving a sequence of linear programming sub- 
problems. We also demonstrate the algorithms described in this paper by solving several example 
problems. 

Key words. Nonconvex fractional problems, sums and products of ratios, global convergence. 

1. Introduction 

Nonconvex optimization problems occur naturally in a variety of economic, 
industrial, and engineering problems (see, e.g. Falk et al., 1992; Konno and Inori, 
1989; Almogy and Levin, 1969). The difficulty associated with the existence of 
multiple local optima had led researchers to study special classes of nonconvex 
optimization problems (such as the minimization of concave functions) and to 
define a number of underlying strategies for global optimization, such as 
enumerative methods, branch and bound, and cutting plane methods (see Horst 
and Tuy, 1990). 

In this paper, we describe a new general strategy that can be applied to 
nonconvex optimization problems where the objective function is either a sum or 
a product of two or more ratios of linear functions or a product of linear 
functions. In our approach, we first transform the problem into an "image space" 
by associating a new variable with each of the individual ratios or linear functions 
in the objective function. Then we proceed to solve the problem by analyzing it in 
the image space where the objective function is more tractable-in certain 
directions. 

The first class of optimization problems which we address has the form 
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~ , :  maximize f (x)= k hi(x) k { cfx + Yi 
x~S i=1 di(x) - i=1 \ T i x  T-~i ]1 

where S = {x [Ax <~ b, x >10}. The numerator and denominator of each ratio in 
the objective function are linear functions where c i and h i are n-component 
vectors, N and 6 i are constants, and hrx + 6 i > O. 

When problem Na is transformed into its image space, each ratio is mapped 
into a single coordinate r i and the objective function becomes one of maximizing 
the linear function E im~ r i over the feasible region in the image space. By 
sequentially optimizing in the new coordinate directions, we derive an algorithm 
for problem ~1 in the next section with an emphasis on illustrating the concept of 
image space analysis. 

In Section 3, we extend our approach to the related class of problems 

~2: minimize g(x)= fi  d-d~= fi  - ( c f x  + ii) \ 
xES /=1 i=I \ h f x +  

where S = {x [ Ax ~ b, x >I 0}, c i and hi are n-component vectors, Z and 6/ are 
constants, and hfx  + 6,. > 0. We present an algorithm similar to the one developed 
for problem ~1 where a new variable w i is associated with each ratio and the 
transformed problem N2 is a problem of minimizing the hyperbolic function 
IIi% 1 w i in image space. 

We extend the basic concept of image space analysis in Section 4 to the class of 
problems referred to as linear multiplicative programs (Konno, Yajima, and 
Matsui, 1991). These optimization problems have the form 

~3: minimize h(x) = [I  (cfx + Yi) 
x~S /=1 

where S = {x [ Ax <~ b, x >! 0}, c i are n-component vectors, and 3~ are constants. 
Under the image space transformation, each linear function in the objective 

function is treated as a coordinate Yi and problem ~3 is equivalent to minimizing 
the hyperbolic function Ilim_x Yi" We describe an algorithm for problem ~3 which 
places upper and lower bounds on the optimal solution and then exploits the 
linearity of the coordinate functions y/. 

Finally, in Section 5, we summarize our work and briefly discuss additional 
possible applications of our approach for globally optimizing nonconvex program- 
ming problems. 

2. Optimizing the Sum of Linear Fractional Functions 

In this section, we describe a new algorithm for locating a global solution to 
p r o b l e m  ~b 1 , the problem of maximizing a sum of ratios of linear functions over 
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linear polyhedra. Although a considerable amount of work has been done on the 
problem of optimizing a single ratio of linear functions, there have been very few 
results that address the more general case where the objective function consists of 
a sum of ratios (Ritter, 1967; Schaible, 1977, 1981). 

Almogy and Levin (1971) presented theoretical results for problems where the 
objective function is a sum of ratios of linear or quasi-concave functions and 
algorithmic results for problems involving up to three separable linear ratios. 
However, they use a parametric approach based on the work (for the single ratio 
problem) of Dinkelbach (1967) and Jagannathan (1966). We have shown this 
approach to be in error (Falk and Palocsay, 1992). 

In another approach to the problem, Cambini et  al.  (1989) developed an 
algorithm for the case of two ratios based on the concept of "optimal level 
solutions", by which they generate a sequence of ever-improving local solutions 
which must, in a finite number of steps, terminate at the desired globally optimal 
point. More recently, Konno, Yajima, and Matsui (1991) have proposed a 
parametric linear programming algorithm for minimizing the sum of two linear 
fractional functions. 

2.1. SOLUTION ALGORITHM 

In our algorithm, problem N1 is transformed from "X-space" into an "image 
space" by mapping each ratio in the objective function into one dimension of the 
new space. The image of the feasible region is defined as the (generally 
nonconvex) set 

T1 = { (r l , . . - ,  rm) l ri = n i ( x ) / d i ( x ) ,  i = 1 , . . . ,  m; for some x ~ S } 

where the functions d i ( x  ) are assumed to be positive. Figure 1 illustrates this 
mapping concept for m -- 2. In this section, we assume that m is equal to two only 
to simplify the presentation of the algorithm. We discuss the extension of the 
algorithm for m greater than two in the next section. 

After its transformation into the image space, problem 3~ becomes a problem 
of maximizing the linear function r~ + r 2 over T a. We observe that the new 
objective function has linear isovalue contours and use this observation to get 
initial bounds on a subset of T 1 in which the solution is guaranteed to lie. 

Initially, we determine the values 

0 . h i ( x )  n 2 ( x )  
u I =maximum -5-;-v and u~ =maximum 

x s S  a l t x  ) ~ s  d2(x ) 

to place upper bounds on r 1 and r2, respectively. These values serve as bounds on 
the image space as shown in Figure 2. Fortunately, these two problems are linear 
fractional programs which can easily be solved (e.g., by using the Charnes and 
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n~(x) 

- I m a g e  space  

~ D I X I  ~ r 1 

Fig. 1. "X-space" to "image space" mapping concept. 
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I 
Fig. 2. Initial bounds on the optimal solutions of ~1 in image space. 
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Cooper (1962) variable transformation which allows the solution of the linear 
fractional problem via an equivalent linear program). 

Solution points of these two problems, denoted x 1'~ and x 2'~ respectively, 
determine the points r(x 1'~ and r(x 2'~ in the image space where 

(nl(x 1'0) n2(xl'~ 
r(x = (rl(xl '~ r2(xl '~  = d2(x 1'~ 

and 

(nl(X 
r(x 2,~ = (r l (x2 '~ r2(x2'~ = \d~(x2,0), d2(x 2'~ �9 

Both of these points are feasible and we identify the one which provides the best 
lower bound for the subset of T 1, i.e., we choose the point which gives us 

fl = maximum {rl(X 1'0) q- F2(XI'~ rl(x a'~ + r2(x2'~ . 

Note that the isovalue contour r I + r 2 =ft ,  illustrated in Figure 2, determines an 
initial triangular subset of the image space that will contain the solution. We 
denote the second and third points of the triangle as l ~ and v ~ where l ~  
(1 ~  ~ ( u ~ , f - U l  ~  ~ (v ~  ~  0 0 = = - u2, u2). Thus, we have reduced the 
size of the feasible region in image space which must be searched and determined 
both upper and lower bounds on the optimal global solution value. 

After  locating the three points u ~ l ~ and v ~ we can, in some cases, 
immediately determine if either l ~ or v ~ (whichever point is feasible) is an optimal 
solution to the transformed problem ~x by applying the following theorem (for 
the proof, see Falk and Palocsay, 1992). 

T H E O R E M  2.1. Let rl E T 1 a n d  r 2, r 3 E E 2 such t h a t  r 1, r 2, and r 3 are the 

extreme points of  a triangular region in image space. Let H ( r ) =  
maximumxes 2 {Ez: 1 [ni(x ) - rg. dz(x)] ). I f  H(r 1) : 0, H(r 2) < 0, and H(r 3) < 0, then 
r *  = r I where 

, _ n , ( x * )  

r i - -  4(x*) and x* is an optimal solution to problem ~1 �9 

We can use this result to check for optimality when the parametric function H is 
zero at either l ~ or v ~ For example, in Figure 2 l ~ is a feasible point in the image 
space. If H(l ~ is zero and both H(v ~ and H(u ~ are strictly negative, then we 
know that r* is the point l ~ 

If the optimality check fails, then we are interested in efficiently searching for 
the optimal solution in the bounded subset of T 1 determined during the 
initialization phase of the algorithm. The iterative method we use is one of 
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alternately solving two linear fractional programs which maximize r 1 and r2, 
respectively, in the defined region. In each of these fractional programs, we have 
replaced one of the ratios in the objective function of problem ~,  with a 
parameter  t and added a constraint on t based on the replaced ratio to obtain the 

problems 

. .  h i ( x )  
maximize ~ + t 2 

subject to 

x E S  

 2(x) 
t,_ <- d2(x----7 for fixed t 2 

and 

n2(x) 
maximize t 1 + d2(x~--y 

subject to 

x E S  

nl(X) 
t l  <~ 

d l  (x) 
for fixed t 1 . 

The  parameters t 1 and t 2 a r e  chosen at each iteration k so that r I and r 2 remain 
within the limits of the rectangular region defined by the points u k, v k, and l ~ of 
the current bounded region and the unlabeled point (v~, l~). Note that at least 
one of these two problems is already solved since one of the two points l k and v k 

0 0 
is both feasible and a lower bound partially defined by either u 1 or u z. 

The solutions of these problems are used to slice off pieces of the bounded 
region either vertically or horizontally and thereby reduce the size of the search 
space, if we use the Charnes and Cooper transformation for linear fractional 
programs, we are actually solving a sequence of linear programs. As these 
iterations continue, the best upper bound does not increase and the best lower 
bound does not decrease. If the best upper and lower bounds converge to a 

common value, it must be optimal. 
However ,  in general, the procedure could "stall" and not be able to further 

reduce the size of the current bounded region. This situation is illustrated in 
Figure 3. Note that stalling occurs at iteration k only when the two points v k and 
I k are feasible and on the same isovalue contour. 

If the procedure stalls, we then (arbitrarily) divide the rectangle [(v~, 12k), l k, 
u k, v k] into two rectangles 

[ (ok  , k 1 k lk  :(U1 k l l ) ,  , 2) + tk), + lk), vq 
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Fig. 3. Stalling in the iterative procedure for ~i.  

y 

and 

~ �89 h + l~)] [~ ((D 1 ' l k) _}_ /k), l ~, U ~, 

We next consider  two subproblems defined by the bounds  on the two newly- 

c rea ted  rectangles.  No te  that  if the best  solution of  ei ther  of  these subproblems  is 
be t te r  than the feasible points  v k and l k, the basic p rocedure  will cont inue  with 

this be t te r  point  defining a single new triangle (based on a new isovalue contour)  

which is k n o w n  to contain  the opt imal  solution. Note  also that  if the solutions of  
the new subproblems  are bo th  worse than v k and l k, then the basic p rocedure  

appl ied to each subprob lem will cont inue.  

The  only difficulty that  remains  is in the (unlikely) case that  the best  solution of  

one  or  bo th  of  the subproblems  gives a value to r 1 + r 2 identical to v ~ and l ~. In  
such a case, we would  cont inue  to split the rectangle(s) until ei ther one  happens  

on  a point  which gives a different  value to r I -k r 2 than the c o m m o n  value of  v ~ 
and l ~, or  the area of  the region known  to contain an opt imal  ratio is be low some 
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given tolerance. Note that the "area of uncertainty" is, in fact, halved in the 
worse case scenario where the new split fails to restart a stalled problem. 

2.2. EXTENSIONS OF THE ALGORITHM 

The extension of our algorithm to the problem of maximizing a sum of m linear 
ratios when m is greater than two is straightforward although it becomes more 
difficult to visualize. We are now transforming problem ~1 into the m-dimensional 
space where each of the ratios in the objective function is mapped into one of the 
m dimensions. The transformed problem consists of maximizing the sum of the r i 
over T 1 so that the isovalue contours of the objective function are hyperplanes. 

0=  maximumxes ni(x)/di(x ) for i =  We determine an initial upper bound u i 
1 . . . .  ,m  and use the solution points x ~'~ to determine 

fl=maximuml~i~<,n .= ~ J "  

The points where this initial isovalue contour intersects the upper bounds, 
together  with the upper bound point u ~ define an m-simplex subset of the image 
space which contains the optimal solution r*. Theorem 2.1, which gives us a 
criteria for optimality, immediately extends to the case of m ratios by the 
convexity property of H proven in Falk and Palocsay (1992). 

We extend the iterative steps in the algorithm by replacing all of the ratios in 
the objective function of ~1 except one with the parameters t i and adding the 
appropriate constraints on these parameters.  Thus, each of these problems 
remains a linear fractional program, and so is equivalent to a linear program. 
Convergence of the algorithm occurs in the same manner  it did for the case of two 
ratios. 

If the algorithm stalls, we apply the same approach described for two ratios. In 
the extension to the case of m ratios, we use a hyperplane to divide the m-simplex 
subset into two equal-sized subregions. Then we identify an isovalue contour in 
each subregion using the initialization steps and choose one of them to restart the 
iterations if it has a better  isovalue contour value than the current one. If not, we 
continue by executing the algorithm separately in each of the two subregions until 
we obtain a global optimal solution in each subregion or we find a new improved 
isovalue contour for continued iterations. 

As a final note, we mention that we can easily use our algorithm to address the 
form of problem ~1 with an objective to be minimized by converting the objective 
function into its equivalent maximization form (min f occurs at the max of - f ) .  
Also we point out that while our figures illustrate the algorithm in the first 
quadrant,  in general there is no sign restriction on the ratios in ~ .  
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2.3. EXAMPLE PROBLEMS 

T h e  first e x a m p l e  p r o b l e m  is 

- x  q- 2x 2 n L 2 
max imize  ~-~x~ - 4x 2 + 5 

subjec t  to 

X l + X 2 ~ 1 . 5  

2 1  ~ X 2 

0 ~ x 1 ~ 1  

0 ~ x z ~ l .  

4x~ - 3x 2 + 4 
-t- _2x1 _t_x 2 q_ 3 J  

F igure  4 i l lustrates the  feasible  region in image  space for  this p rob l em.  T h e  initial 

u p p e r  bounds  on r 1 and  r 2 are  Ul ~ = 4 and u ~ =2 .1111 ,  respect ively.  Us ing  the  
solut ion  points  x 1'~ = (0, 1) and x 2'~ = (0.75, 0.75) ob ta ined  f r o m  comput ing  these  
bounds ,  we  ident i fy the feasible  points  r(x 1'~ = (4, 0.25) and r(x 2'~ = (0.6471, 

2.1111).  Thus ,  the initial l inear  isovalue con tour  r I + r 2 is v ~ = (2.1389, 2.1111),  
and  u ~  (4, 2.1111). 

C o m p u t i n g  H(r) at each  of these  points  yields H(l ~ = 0.0, H(v ~ = - 5 . 1 8 0 6 ,  
and  H(u ~ = -7 .4444 .  Since H(l ~ is equal  to zero and bo th  H(v ~ and H(u ~ are  
nega t ive ,  the  cr i ter ia  in T h e o r e m  2.1 are  satisfied and we can immedia t e ly  ident ify 
l ~ as an op t ima l  solut ion point  r* in image  space  and  x * = ( 0 , 1 )  as the  

co r r e spond ing  op t ima l  solut ion in X-space .  

t'q t N -  

\ 
\ v o u o 

- -  --/~-- \\\\ 

I~ i i  i i i  i t 1 [ 1 1 1 1 ~ 1 1 ~ 1 1 1 1 1 1 1 1 1 1 1 1  I I I 1 ~ 1 1 1 1  ~ 
1 2 3 

f l  

Fig. 4. Graphical representation of the first ~1 example problem. 
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'3 1 2 ,3 4 

F1  

Fig. 5. Graphical representation of the second ~1 example problem. 

Now suppose that we want to minimize the objective function in this problem. 
After  converting the problem into its equivalent maximization form, we find the 
initial upper bound on (rl ,  r2) is U ~ = ( - -0 .4 ,  - -0 .25)  with corresponding solutions 
x 1'~ = (0, 0) and x 2'~ = (0, 1). The feasible points r(x 1'~ and r(x 2'~ are computed 
as ( - 0 . 4 , - 1 . 3 3 )  and ( - 4 , - 0 . 2 5 ) ,  respectively. The initial triangular region is 
defined by u ~ = ( -0 .4 ,  -0.25) ,  l ~ = ( -0 .4 ,  -1.33) ,  and v ~ = (-1.48,  -0 .25)  with 
isovalue contour r 1 + r 2 equal to -1.73. These bounds are illustrated in Figure 5 
for the minimization form of the problem. 

Since the optimality check fails for this problem, we begin maximizing in the 
direction of r 2 to reduce the size of the bounded region containing the optimal 
solution. However, in this case, the algorithm stalls after approximately twelve 
iterations and we proceed by following the approach outlined in Section 2.1. The 
result is identification of a new isovalue contour which is used to determine a new 
triangular region to restart the steps of the algorithm. After a further reduction of 
the search space, the algorithm stalls again and we repeat the steps for the stalling 
procedure to identify the optimal solution at r*-(0.6654, 0.9586) and x * - ( 0 ,  
0.2839). 

3. Optimizing the Product of Linear Fractional Functions 

In this section, we are also concerned with optimization problems involving ratios 
of linear functions. However, in problem ~2 we are interested in optimizing the 
product of these ratios rather than their sum. We relate this problem to problem 
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~1 and show that we can also apply the image space transformation approach to 
solve this problem. 

Motivated by bond portfolio optimization models (Konno and Inori, 1989), 
Konno and Yajima (1992) have addressed this problem for two ratios using a 
parametric  simplex algorithm�9 Their  method does not seem to easily extend to 
products of more than two ratios�9 

3.1. SOLUTION ALGORITHM 

Following the same approach described in Section 2.1 for problem ~1,  we map 
each ratio in he objective function of problem ~2 into a single coordinate w i and 
define the image of the feasible region as 

W 2 = { ( W  1 . . . .  , w,) I wi = n i ( x ) / d i ( x ) ,  i = 1 , . . . ,  m; for some x e S} .  

Since the objective function of ~2 is a product of functions, the isovalue 
contours of the problem in its image space are hyperbolas of the form W l W  2 = K 

(for m = 2). If we assume that all of the ratios are nonnegative, then the image 
space T 2 is contained in the first quadrant (see Figure 6). In Section 3.2, we 
discuss the application of the algorithm to cases involving nonpositive ratios. 

10T 

I 

iii!!iiiiiiiiiiii 
I 

it o 

Fig. 6. Initial bounds on the optimal solution of ~2 in image space. 

w~, ==f . 
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We get an initial lower bound l ~ on the optimal solution in the image space by 
solving the linear fractional programs 

l~ =minimum nl(x) 0 n2(x) 
xcs d - - ~  and 12=minimumx~s d2(x) 

as before. The solution points for these two problems, x 1'~ and x 2'~ define the 
feasible points w(x 1'~ and w(x 2'~ in image space where 

{n l (x  1'0) n2(xl'~ 
w(x 1,0) = (Wl(Xl'~ w2(xl'~ = \ ~ ,  d2(x 1,~ 

and 

(n (x n2(x2'~ 
w(x  2,0) = (Wl(X2,~ w2(x2'~ = \all(X2,0) , d2(x  2'0) �9 

An upper bound fu on the optimal solution value in the image space is provided 
by one of these two feasible points as 

fu = minimum {Wl(Xl'~176 Wl(X2'~176 

Using the isovalue contour WlW 2 =fu and the lower bound l ~ we determine an 
initial subset of the image space which is guaranteed to contain the optimal 
solution as shown in Figure 6. The points u ~ and v ~ in Figure 6 are defined 
mathematically as u ~ = (u ~ , u~) = (I~ fu/l~) and v ~ = (V~ v ~ = (f,/l~ l~ 

It turns out that the following result holds (analogous to Theorem 2.1) and 
therefore we can use this result to determine if either u ~ or v ~ (whichever point is 
feasible) is an optimal solution to problem 9~ before continuing on to the 
iterative phase of the algorithm. The proof of this theorem parallels the one given 
in Falk and Paloesay (1992) for Theorem 2.1. (Note that the function G(w) is 
concave whereas the function H(r) is convex.) 

T H E O R E M  3.1. Let  w a E T 2 and W 2, W 3 ~ E 2 such that w 1, w 2, and w 3 are the 

extreme points o f  a triangular region in image space. Let  G ( w ) =  min imumxc  s 
2 1 {2i= 1 [ni(x ) - w~. di(x)] }. I f  G(w 1) = O, G(w 2) > O, and G(w 3) > 0, then w* = w 

where 

hi(X*) 
w* - d i (x ,~  and x* is an optimal solution to prob lem ~2 �9 

Now we proceed using the same approach developed for problem ~1 where we 
search for the optimal solution by minimizing in the coordinate directions; that is, 
for the kth iteration, we alternately minimize w I and w 2 within the rectangular 
region defined by the points l g, u g, and v k and the unlabeled point having 
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coordinates (Vl g , u2g). We accomplish this by appropriately choosing the parame-  

0 and t 2 = u~ and solving the two ters t 1 and t 2 in each iteration (initially, t~ = v~ 
linear fractional programs 

hi(x) 
minimize d-@ff" t2 

subject to 

x E S  

n2(x) 
t 2 ~< dz(x ) for fixed t 2 

and 

n2(x) 
minimize t I �9 d2(x ) 

subject to 

x E S  

hi(x) 
t l~<dl (x  ) for f ixedt  1. 

The  result of this process is to iteratively tighten the upper  and lower bounds 
until either an optimal solution is obtained or the procedure stalls and cannot 

improve  the current bounds.  If  the latter occurs, subproblems defined at the 
i teration are solved to restart the algorithm and to locate a global solution as 
described in Section 2.1. 

3.2. EXTENSIONS OF THE ALGORITHM 

We can easily extend this algorithm to the case of more than two ratios by 
following the general approach outlined in Section 2.2 for the sum of ratios 
problem.  

Note  that the scheme which we have described also extends easily to problems 

of the form of p rob lem ~2 where one is interested in maximizing, by simple 
inverting the objective function (min f occurs at the max of 1 / f ) .  

However ,  recall that the algorithm was restricted to cases where all of the ratios 
are nonnegative.  To use the algorithm to solve problems involving nonpositive 
ratios, we first per form a variable t ransformation of the form z i = - w  i on each of 
the image space variables which correspond to one of these ratios. To illustrate 
this approach,  consider the problem of minimizing the product  of  two ratios, w 1 
and w 2. The graph of T 2 can lie in any of the four quadrants,  depending on the 
range of values for each of the ratios, and we have four possible cases: 

Case 1 : w l ~ > 0  , w2~>0 
Case 2: w 1~<0, w 2/>0 
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Case 3: w I~<0, w e~<0 
Case 4: w I I>0 ,  w 2~<0. 

To determine which of these four cases need to be considered, we solve 
prob lem ~2 in each quadrant  of the image space. We use two additional 

constraints of the form ni(x ) >10 if w i >~ 0 and ni(x ) ~ 0 if W i ~< 0 to define the 
boundaries  of the quadrant.  Under  the assumption that the denominators  are 
strictly positive, these constraints restrict the numerators  of the ratios, and 

therefore  the original ratios, to be either nonnegative or nonpositive. 
If  any quadrant  has no feasible solutions, we will identify it when we at tempt  to 

get lower bounds in that quadrant  and eliminate it f rom further consideration. 
The global optimal solution for N2 will be the minimum over the solutions in the 

individual quadrants.  
To  apply the algorithm to the situation in Case 2, we define a new variable 

z I = - w  I and solve the equivalent problem of maximizing the product ZlW 2. The 
effect of the variable t ransformation in this case is to multiply the objective 

function by - 1  so that the objective changes f rom minimize to maximize. We see 

the same effect in Case 4 where we define z 2 -- - w  2 and maximize WlZ 2. But in 
Case 3, where both ratios are nonpositive, we define z~ = -w~ and z 2 = - w  2 and 

minimize the product ZlZ 2. 
For  the more  general problem ~2 with m ratios, there are 2 m possible cases. 

Each case will require the addition of m constraints to restrict the numerators  
ni(x) of the ratios appropriately.  Whenever  we perform an odd number  of 

variable transformations of the form zi = -wg to solve one of these cases, then the 
objective is to maximize. Otherwise, the t ransformed problem will remain a 

minimization problem. 

3.3. E X A M P L E  PATFERNS 

In this section, we demonstrate  how our algorithm is used to solve both 
minimization and maximization forms of problem 3~2 . First, we consider the 
example  problem from Section 2.3 where the objective function is now the 

product  of two ratios of  linear functions: 

( - x  I + 2 x  2_+ 2 ]  ( 4x 1 - 3x 2 + 4 ] 
minimize \ 3X 1 -- 4X 2 + 5 ] \ - 2 x  1 + x 2 + 3 /  

subject to 

X 1 -I- X 2 ~ 1.5 

X 1 ~ X 2 

0~<xl~<l  

0~<x2 ~<1. 

Minimizing in each of the coordinate directions, we find the feasible points 
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W(X 1'0) ~-(0.4, 1.3333) and w(x 2'~ = (4, 0.25) with the corresponding solutions 
x 1'~ = (0, 0) and x 2'~ = (0, 1) in X-space. Therefore  the initial hyperbolic isovalue 

contour  wlw 2 is fu = 0.53333 and the initial lower bound on the optimal solution 
in image space is l ~ = (0.4, 0.25), as illustrated in Figure 7. 

Now we know that the optimal solution lies under the hyperbola wlw: = 
0.53333 in the region defined by the lower bound l ~ the feasible point u ~ = (0.4, 
1.3333), and the point v ~  (2.1333, 0.25) where the hyperbola intersects the 
lower bound for w 2 . We compute G(w) at each of these points and find 
G(u ~ = - 0 . 7 3 3 ,  G(v ~ = -5 .41 ,  and G(l ~ = 3.25 so that Theorem 3.1 does not 
identify the optimal solution. 

Since the criteria for an optimal solution are n o t  yet satisfied, we proceed with 
the iterative steps of the algorithm. Although we know that the optimal solution 
lies under the hyperbolic isovalue contour,  we must actually search in the 
rectangular region defined by the points v ~  u o, and (v ~ , u~ to maintain linear 

constraints on the problem. In this case, we do not need to minimize in the 
direction of w 1 since this problem was solved during initialization (i.e., u k = u ~ for 
each iteration k). So our next step is to minimize w 2 subject to the additional 
constraint wl ~<2.1333 (in linear form). The solution of this linear fractional 
program, the feasible point (2.1333, 0.4007), moves the linear bound on w 2 from 
0.25 and 0.4007 and determines v ~= (1.3311, 0.4007) and u ~= (0.4, 0.4007). 

Now we repeat  the process of minimizing in the direction of w 2 (with the 
appropriate constraint on w~) and finding a tighter lower bound on w 2 until the 
lower bound on w e converges to 1.3333 and we identify the optimal solution at 

/ 

I o v o " ~ ~ - -  - -  _ _  
Q i i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 t l  ~ 1 1  L I I I I  ~ 1 1 ~ 1 1 1 1 1 1  [ 

0 1 2 4 

W 1  

Fig. 7. Graphical representation of the first ~2 example problem. 
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Q i t  l l ~  1 ~ 1 1  [ L I I  i I l l [ l  i i i  l i l t  L l l [  1 1 t  l l l l l  i ~ 
0 1 2 3 

W l  

Fig. 8. Graphical representation of the second ~2 example problem. 

w* -- (0.4, 1.3333). Thus, the corresponding point x* = (0, 0) is the global optimal 
solution to the problem. 

If we consider the problem of maximizing (rather than minimizing) the 
objective function of this example problem, then we must first convert the 
problem to its equivalent minimization form: 

( 3x 1 - 4 x  z + 5 ~ - 2 x  l + x 2 + 3~ 
minimize \-_-~-1~_ ~ ~ - ~ / (  4x I _ 3x 2 + 4 / 

The feasible region of the image space and the initial bounds for the new problem 
are illustrated in Figure 8. The algorithm locates the optimal solution at w*=  
(0.7143, 1) so that the global solution to the max problem is l / w * =  (1.4, 1) at 
x* = (0.5, 1). 

4. Optimizing the Product of Linear Functions 

The basic concept underlying the algorithms presented in Sections 2 and 3 for 
problems ~1 and ~z is the analysis of the optimization problem in an image space. 
In this section, we apply this concept to problem ~3, the problem of minimizing a 
product of linear functions over linear polyhedra. While this is a special case of 
the product-of-ratios problem addressed in Section 3, the special structure here 
allows for a more efficient resolution. 

Recently, Konno, Yajima, and Matsui (1991) have addressed this class of 
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problems, referred to as linear multiplicative problems. However,  their paramet- 
ric simplex algorithm only treats problems involving two linear functions. 

4.1. SOLUTION ALGORITHM 

When we map problem ~3 into its image space, each linear function in the 
objective function corresponds to a single variable Yi. The set T 3, defined as 

T3 = {(Yl, �9 �9 �9 , Ym) [ Yi = CTX + 3~, i = 1 , . . . ,  m; for some x E S } ,  

represents the image of the feasible region. Unlike T 1 and T 2, the set of T 3 is a 

convex set (actually a polytope) because the mapping Yi = CTX + Ti is a linear 
mapping. And since the objective function of 3 ~ 3 is quasiconcave (see Section 4.2 
for a proof) ,  if ~3 has a solution, it must have a solution at an extreme point. We 
take advantage of this special structure in developing an algorithm for problem 

Note  that the isovalue contours of the transformed objective function are 
hyperbolas of the form YlY2 = K (for m = 2). Under  the assumption that all of the 
linear functions are nonnegative, the image space T 3 is located in the first 
quadrant  (see Figure 9). We will consider the more general case, where T 3 may 
overlap another  quadrant,  in the next section. 

In the first phase of the algorithm, we determine lower bounds l 1 and 12 on the 
optimal solution by solving the two linear programs 

11 =minimum cTx + 3'1 and l 2 =minimum r CzX + 3'2 �9 xCS xES 

The solutions of these two problems, denoted by x ~ and X 2, determine the feasible 
points 

Y(X1) = (Yt(X1),  Y2(X1)) =(cIT(X1) -[- ")/1, cT(X1) -[- ")/2) 

and 

T 2 Y(x2) = (Yl(X2), Y2(X2)) = (cT(x2) -~- 'Yl, C2(X ) -[- 'Y2) 

in the image space T 3. 

We now determine an initial upper bound on the optimal solution as 

f .  = minimum { y l ( f f ) y 2 ( f f ) ,  yl(x2)y2(x2)}.  

Clearly the optimal solution (in image space) satisfies y l Y 2 ~ f u  and Yl ~ l l ,  
Y2 >~ 12- (See Figure 9). The smallest triangle (in general, simplex) containing this 
region has vertices l, u, and v where u = (u~, u2) = (/1, fu/lx) and v = (v 1 , v2) = 

( fu/12,/2)" 
Let  a ly  I + a2y 2 = 1 determine the line through the points u and v. Now we 
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Fig. 9. Ini t ial  bounds  on the  op t imal  solut ion of  ~3 in imag e  space.  

replace the objective function in problem ~3 with the linear function associated 
with this equation and solve the linear program 

minimize aty~  + a2y  z 
x ~ S  

where Yl = crl x + 71 and Y2 = cr2 x + 72. 

The optimal solution and objective function value of this linear program in 
image space are denoted yl and b 1, respectively. If b 1 = 1, then we are done with 
the optimal solution to ~3, Y*, equal to either u or v, whichever point is feasible, 
since the entire feasible region must satisfy a l y  I + a2y  2 >i b ~. Otherwise, b 1 < 1 
and we know that the optimal solution of ~3 lies in the region between the two 

lines a l y  1 + a2y  2 = 1 and a l y  1 + a2y  2 = b ~, and under the hyperbola YlY2  = f , .  (If 
the feasible point ya defines a better hyperbolic isovalue contour,  we replace fu 
with the new value and revise the coordinates of u and v.) 

When b a < 1, the optimal solution must satisfy aly~ + a2y  2 >i b ~ and YlY2  <~fu a s  

well as the bounds Yl ~ l~ and yz >/12. The set of such points is composed of two 
disjoint sets (see the shaded areas of Figure 10), one of which is enclosed in the 
triangle with vertices u, t a, and t 12, while the other is enclosed in the triangle v, t 2, 
and t 2~. Each of these is treated as above. 

In Figure 10, the minimum in the area under the line between t zl and v occurs 
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y2 

YzY, = f  . 

aly  I +a2ya= 1 ~,~ 
U 

aty I + a2y2= b i \ 

Fig. 10. Additional 
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bounds on the optimal solution of ~3 in image space. 

at v so we are done  in that  area. But ,  since the area under  the line be tween  t 12 

and  u does not  contain  any feasible points,  the result of  minimizing in this area 

will be  the point  y~. Thus,  the global opt imal  solution must  occur  at y* = v. 

In  general ,  we repea t  the process of  determining disjoint t r iangular  subsets and 

minimizing their  associated l inear functions until we identify one  of  the vertices in 

T 3 as a global  min imum.  In each i teration,  we will ei ther  locate a new ver tex or  

e l iminate  an area f rom fur ther  considerat ion (either because we have found  the 

opt imal  solut ion in that  area or  because the area does not  contain any feasible 

points.  Since the opt imal  solution is at an ext reme point ,  the process is finite. 

Conceivably ,  this process could lead to a sequence of  2, 4, 8 , . . .  l inear 

subprob lems  which need  to be solved. N o n e  of  the example  problems which we 

genera ted  required  the solut ion of  more  than four  subproblems in total since the 

a lgor i thm quickly e l iminated empty  subsets. 

4.2. EXTENSIONS OF THE ALGORITHM 

For  p rob lems  involving m > 2 ratios, the extension is not  difficult. As  before ,  let 
T 

Yi = ci x + ~ and let l = ( l l , .  �9 �9 lm) denote  a vector  of  lower  bounds  defined by 
l i = minimumx~ s c r x  + ~ .  We assume li > 0 for  i = 1 . . . . .  m. Let  x i solve this 

p rob lem,  and set 
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Clearly the optimal solution y* (in image space) must satisfy the inequality 
[Ii~ ~ y j  <~f, and also the bounds yj >I/t-. Note that I I j~  l j ~ f ,  and if equality 
occurs, y* = f. .  

When Hjrn=l l i < fu, set z i = l + 'ri ei where e i is the ith unit vector and 

I,-flI, 
j = l  

" -  fll, 
j ~ i  

m The points z a, . . . , Z m all lie on the surface IIj=1 yj = f . .  It is easy to determine a 
m vector a such that IIj=~ajyj = 1 for y = z  j ( j =  1 , . . . , m ) .  We now solve the 

(linear) program 

minimize ~ a , (crx j  4- 7i) 
x E S  j = l  

and obtain a value b 1. In image space, the optimal solution y* must satisfy 
m 

m Ej= 1 a y j  >t b 1 in addition to the inequality l~j=l  lj ~<f,. If b 1 = 1, we are done. If 
the optimal solution yl Of this problem satisfies IIj~ 1 y) < f , ,  we replace f ,  by 
IIj~ 1 y) and continue. 

m ~ l > f ,  but b 1 The only other possibility is that IIj= 1 yj < 1. In this case, the 
feasible region (in image space) consists of m subsets, each of which must be 
investigated as candidates which could contain the global optimizer. Each subset 
S i contains the point t i where the line segment [l, z i] intersects the hyperplane 
~'j=lm ajy j  = b ~. (See Figure 11). The point z i is also in subset s i 

Now consider the point t i as the vertex of a cone where extreme rays pass from 
t i through t j (]  r i). There are n -  1 of these, and they pierce the surface 
{y [FIj~ 1 yj = f , }  in points # .  

The subset S ~ is contained in the simplex defined by the points {t ~, z i, t ~ 
( j  r i)}. For example, in Figure 11 one simplex is determined by t 1, Z 1, t 12, and 
t 13. The algorithm continues by minimizing a linear function whose isovalue 
contours are parallel to the hyperplane passing through the points z i, t q ( j  r i), 

m all of which lie on the surface {y [ IIj=l yj = f , )} .  As there are only a finite number 
of extreme points, the process is finite. 

In general, the extension of this algorithm to the case where m i>3 is 
straightforward when all terms are known to be nonnegative. If problem ~3 
involves nonpositive terms, then we use the approach described in Section 3.2 for 
problem ~2 to perform variable transformations on the nonpositive functions. 

We note that a global optimal solution can be obtained directly for problems of 
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Fig. 11. Extension of the algorithm for ~3. 
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the form of ~ 3  where the objective is to maximize rather  than minimize by using 
standard nonlinear programming techniques. It is well-known that quasi-concave 

programs share the proper ty  with convex programs that a local op t imum is a 

global op t imum (see, e.g.,  Mangasarian,  1969). Since the constraints of ~3 are 
linear, we only need to show that the objective function is quasi-concave to apply 
this property .  

T H E O R E M  4.1. The function h(x) =II i=  1 (cfx + y~) where ~ m C i ) ( , ~ - ~ i > O ,  c~ are 
n-component vectors, and Y~ are constants is quasi-concave. 

Proof. Define a level set of h as L = (x E SIh(x)>-'r). Since h(x) is quasi- 
concave if and only if all of its level sets are convex, it suffices to show that L is a 
convex set of all ~-. But the set equals 

[ x E S  21n(cfx+3~)~>ln~ -} 
i = 1  

and this set is convex since each function In (cfx + 3~) is a concave function. [] 
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4.3. EXAMPLE PROBLEMS 

In this section, we present several examples to demonstrate the algorithm for 
minimizing a product of linear functions. Consider the following problem due to 
Konno  and Kuno (1989), where the second linear term in the objective function 
has been modified to make the image space variable w 2 nonnegative: 

minimize (X 1 -I- X 2 ) ( X  1 - -  X 2 -t- 7) 

subject to 

2X 1 "~- X 2 ~ 1 4  

X 1 ~- X 2 ~ 10 

- -4X 1 ~" X2 ~ 0 

2X 1 -~-X 2 / > 6  

X2 + 2 x 2 ~ > 6  

X 1 - - x 2 ~ 3  

X l ~ 5 .  

To get initial bounds on the optimal solution in image space, we minimize in 
each of the coordinate directions and find y(x 1) - - (4 ,  7) and y(x 2) = (10, 1) at 
x 1 = (2, 2),  x 2 = (2, 8). The best lower bound is determined to be l = (4, 1) and 
the initial hyperbolic isovalue contour is YlY2 = 10, with v = (10, 1) and u = 
(4, 2.5). Figure 12 illustrates the image space for this problem. 

Next  we determine the line through the points u and v, 0.0714y I + 0.2857y 2 = 

\ 
\ 
\ 

\ 
\ 

x, 
\ 

r 
I 

I v = y ' -  
I 

0 2 4 6 8 1 0 

Y l  

Fig. 12. Graphical representation of the first ~3 example problem. 

,r 
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1. In this case, the minimum of 0.0741y 1 + 0.2857y 2 occurs at v, so the global 

opt imal  solution is y* = (10, 1) at x* = (2, 8). 
In the next example,  we modify the feasible region to make  the problem more  

difficult: 

minimize (x 1 + x2)(x 1 - x 2 - 7) 

subject to 

2x a + x 2 ~< 14 

x 1 + x 2 ~< 10 

1.44x I + x 2 ~> 4.89 

-1 .58x  1 + x  2 ~<5.65 

-1 .03x i  + x 2 ~< 5.93 

x I + 2X2 ~> 6 

x I - - X 2 ~ 3  

x 1 ~ 5 .  

The initial bounds remain unchanged, but when we minimize 0.0714y 1 + 

0.2857y 2 we now get the point (y l ,  Y2) = (5, 1.5) as the optimal solution to this 
linear p rogram (rather than v) with an objective function value of 0.7857. This 

new point is feasible in the image space and defines a new hyperbola,  YlY2 = 7.5, 
which is bet ter  than the initial one. Using the new hyperbola  and the lower 

bounds on Yl and Y2, we determine u ~= (4, 1.875) and v 1= (7.5, 1). At  this 
point ,  we know that the optimal solution must lie above the line 0.0714ya + 

0.2857y 2 = 0.7857, which intersects the new hyperbola  at two points, ya = (5, 1.5) 

and y2 = (6, 1.25), as shown in Figure 13, and under the hyperbola  YlY2 = 7.5. 
Now use use yl  (with u 1) and y2 (with v 1) to construct two lines, one for each 

area of uncertainty. The minimum in the first area is y l ,  so we are done in this 

area. But  in the second area,  the minimum is (Yl, Y2)=  (7, ].05) SO that the 
opt imal  solution in this area now lies above the line 0.0741y I + 0.4444y 2 = .9852 
and under  a new hyperbola,  YaY2 = 7.35. We continue by using the intersection 
points to determine the next two lines. When we solve the two associated linear 
programs,  we find that the optimal solution in the second area,  and the global 

opt imal  solution, is y* = (7, 1.05) at x* = (0.525, 6.475). 
Now we return to Konno and Kuno 's  original problem where T 3, the image 

space of the feasible region, lies in all four quadrants,  as shown in Figure 14. The 
mathemat ica l  formulat ion of this problem is 

minimize (X 1 -]- X2)(X 1 -- X2) 

subject to 

2x 1 + x  2 4 2  

x 1 + x 2 ~ 2  
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Fig. 13. Graphical representation of the second ~3 example problem. 
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Fig. 14. Graphical representation of the third ~3 example problem. 

- - 4 X  1 - [ -  X 2 ~ 1 2  

- 2 x  I - x 2 ~ 6 

- x  1 - 2 x  2 ~ 6 

X I - - X 2 ~ 3  

x1~1.  
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Following the approach described in Section 4.2, we define four cases, one for 
each quadrant. In Case 1, we quickly identify the optimal solution as (Yl, Y2) = 

(0, 0). Similarly, in Case 3 (the third quadrant), we find the optimal solution is 
also (0, 0), after performing variable transformations on both yl and Y2. 

Recall that when we perform variable transformations in Cases 2 and 4, the 
problems become maximization problems that can be solved using a conventional 
nonlinear programming method. We find the optimal solution in image space for 
Case 2 is ( -3 ,  3) compared to ( 2 , - 6 )  for Case 4. Thus, the global optimal 
solution is y* = (2, -6)  with x* = ( -2 ,  4). 

5. Summary 

We have introduced a new general approach which facilitates the solution of a 
class of nonconvex programs, and we have outlined the details for three sub- 
classes. The principal idea is that the problems can be analyzed in a transformed 
space where optimization is easy (at least) in the coordinate directions. The 
specific details are dependent on the problem structure, but are similar in 
application. Sequential optimizations in the easy directions can be set up so as to 
construct a series of nested regions which shrink towards the global optimizer. 

We have not exhausted all potential applications of our approach in this paper. 
In particular, the ideas should extend to problems wherein one is interested in 
optimizing sums of products of ratios, or sums of products of sums of products, 
etc. 
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